Semiclassical limit of the lowest eigenvalue of a Schrödinger operator on a Wiener space Dedicated to Professor Tokuzo Shiga on the occasion of his sixtieth birthday

نویسنده

  • Shigeki Aida
چکیده

We study a semiclassical limit of the lowest eigenvalue of a Schrödinger operator on a Wiener space. Key results are semiboundedness theorem of the Schrödinger operator, Laplace-type asymptotic formula and IMS localization formula. We also make a remark on semiclassical problem of a Schrödinger operator on a path space over a Riemannian manifold. MSC: Primary 81Q20, Secondary 60H07, 35J10.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

SEMI-CLASSICAL LIMIT OF THE LOWEST EIGENVALUE OF A SCHRÖDINGER OPERATOR ON A WIENER SPACE : I. UNBOUNDED ONE PARTICLE HAMILTONIANS by

— We study a semi-classical limit of the lowest eigenvalue of a Schrödinger operator on a Wiener space. The Schrödinger operator is a perturbation of the second quantization operator of an unbounded self-adjoint operator by a C3-potential function. This result is an extension of [1].

متن کامل

Semi-classical limit of the lowest eigenvalue of a Schrödinger operator on a Wiener space : I. Unbounded one particle Hamiltonians

We study a semi-classical limit of the lowest eigenvalue of a Schrödinger operator on a Wiener space. The Schrödinger operator is a perturbation of the second quantization operator of an unbounded self-adjoint operator by a C-potential function. This result is an extension of [1].

متن کامل

Recurrence Formulae for Multi-poly-bernoulli Numbers

In this paper we establish recurrence formulae for multi-poly-Bernoulli numbers. –Dedicated to Professor Ryuichi Tanaka on the occasion of his sixtieth birthday

متن کامل

Minisuperspace as a Quantum Open System

We trace the development of ideas on dissipative processes in chaotic cosmology and on minisuperspace quantum cosmology from the time Misner proposed them to current research. We show 1) how the effect of quantum processes like particle creation in the early universe can address the issues of the isotropy and homogeneity of the observed universe, 2) how viewing minisuperspace as a quantum open ...

متن کامل

An Elementary Proof of the Mazur-Tate-Teitelbaum Conjecture for Elliptic Curves Dedicated to Professor John Coates on the occasion of his sixtieth birthday

We give an elementary proof of the Mazur-TateTeitelbaum conjecture for elliptic curves by using Kato’s element. 2000 Mathematics Subject Classification: 11F85, 11G05, 11G07, 11G40, 11S40.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004